Separating complexity classes with tally oracles
نویسندگان
چکیده
منابع مشابه
Polynomial-Time Random Oracles and Separating Complexity Classes
Bennett and Gill (1981) showed that P 6= NP 6= coNP for a random oracle A, with probability 1. We investigate whether this result extends to individual polynomial-time random oracles. We consider two notions of random oracles: p-random oracles in the sense of martingales and resource-bounded measure (Lutz, 1992; Ambos-Spies et al., 1997), and p-betting-game random oracles using the betting game...
متن کاملSeparating Complexity Classes Using Autoreducibility
A set is autoreducible if it can be reduced to itself by a Turing machine that does not ask its own input to the oracle. We use autoreducibility to separate the polynomial-time hierarchy from polynomial space by showing that all Turing-complete sets for certain levels of the exponential-time hierarchy are autoreducible but there exists some Turing-complete set for doubly exponential space that ...
متن کاملComparing complexity classes relative to physical oracles
We develop the idea of using a physical experiment as an oracle to an algorithm. As a case study, we compare the computational power of deterministic and non-deterministic Turing machines connected to a simple physical oracle, namely, the scatter machine experiment. We prove relativisation theorems for the conjectures concerning P , NP , PSPACE relative to this physical oracle. Finally, we refl...
متن کاملSeparating the complexity classes NL and NP
There is no first order reduction from 3COLOR to REACH. Therefore NL 6= NP.
متن کاملSeparating partial normality classes with weighted composition operators
In this article, we discuss measure theoretic characterizations for weighted composition operators in some operator classes on $L^{2}(Sigma)$ such as, $n$-power normal, $n$-power quasi-normal, $k$-quasi-paranormal and quasi-class$A$. Then we show that weighted composition operators can separate these classes.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Theoretical Computer Science
سال: 1992
ISSN: 0304-3975
DOI: 10.1016/0304-3975(92)90318-a